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Abstract: In the present paper, the propagation of Rayleigh waves in a
strongly heterogeneous medium is discussed. Scattering of stress waves is a
difficult scientific problem. Specifically, the interaction of surface waves with
distributed inhomogeneity seems highly complicated due to the existence of
two displacement components. Rayleigh waves undergo significant attenua-
tion and velocity change depending on the frequency and the inhomogeneity
content. The aim of this study is to highlight the dispersive behavior of con-
crete, especially when damaged, and increase the experimental data in an area
where the work is limited.
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1. Introduction

Stress wave propagation has long been used for characterization of cement-based materials.
Although correlations between wave parameters like velocity or attenuation and strength or
distributed damage have been observed, the results are always qualitative, based mainly on
empirical formulas. One reason is certainly wave scattering due to the extremely inhomoge-
neous nature of the material that contains pores, air bubbles, sand grains, and aggregates as well
as distributed cracks. The length scale of the above phases varies from micrometers to several
centimeters, influencing the propagation of practically any frequency and complicating the in-
terpretation of the results. In order to understand the mechanics of propagation in cementitious
materials, stress wave dispersion in mortar and concrete has been studied.1–3

Focusing on Rayleigh waves, propagation has been studied for multilayered media,4 or
material with surface opening cracks and slots.5 However, the propagation of Rayleigh waves in
a medium with distributed scatterers has not been treated adequately for concrete or other ma-
terials, while the body wave scattering has been extensively studied.6–8

This paper presents experimental results of surface wave propagation in cement-based
materials with randomly distributed and oriented thin inclusions. The aims are: To highlight the
dispersive nature of cementitious materials, to make suggestions for more accurate material
characterization, and to increase the experimental data of dispersion and attenuation in a spe-
cific area where the work is limited so far. The results show that wave propagation velocity
depends on inclusion content and frequency while the effects of dispersion are even visible in
the raw waveforms. Rayleigh wave parameters are much more influenced by inhomogeneities
than longitudinal ones.

2. Experimental details

The experimental setup consists of three wide band piezoelectric transducers with high sensi-
tivity up to 1 MHz. They were placed on the same surface of the specimen (cube of 150 mm
side), in a straight line, with a center-to-center distance of 20 mm. The excitation was con-
ducted 20 mm away from the first receiver by pencil lead break, which introduces frequencies
up to at least 300 kHz. The small distances were selected due to the severe attenuation, which
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made signal acquisition troublesome for longer distances. The material was mortar with fine
sand, and small vinyl plates were embedded during mixing at volume contents of 1%, 5%, and
10%. The presented results concern inclusions of dimensions 15�15�0.2 mm. This shape
resembles actual cracks more closely than the spherical inclusions used previously.2 The acous-
tic impedance of mortar is approximately eight times higher than the impedance of the inclu-
sions. Additionally, the major wavelength of approximately 20 mm (calculated using the major
frequency peak and wave velocity) is comparable to the inclusion dimensions, potentially lead-
ing to strong scattering phenomena. The coupling between the sensors and the mortar surface
was enhanced by roller bearing grease and no pressure was applied on the sensors in order to
minimize any influence on the propagating wave.

3. Inhomogeneity effect on time domain waveforms

Before discussing propagation velocity and attenuation, it is interesting to note the remarkable
degree of distortion visible in the time domain signals. Waveforms collected at different loca-
tions of a strongly heterogeneous medium are certain to exhibit discrepancies. However, aver-
aging of individual waveforms reveals the common pattern (coherent field). In Fig. 1(a), the
averages of waveforms collected by each receiver on a plain mortar specimen are depicted. A
strong Rayleigh cycle follows after the initial longitudinal arrivals. Due to the inhomogeneous
nature of mortar itself, the Rayleigh cycle becomes more rounded as the wave travels across the
surface. Nevertheless, it is clearly visible in all three waveforms.

In the case of mortar with 10% inclusions, which is depicted in Fig. 1(b), the first
receiver (20 mm from the source) reveals a highly distorted Rayleigh cycle, while for longer
distances multiple peaks are observed. The distortion is likely the result of the distribution of
energy in multiple paths. In a homogeneous medium the wave energy travels in a straight line
[see Fig. 2(a)] and a reference Rayleigh point [e.g., the strong negative peak in Fig. 1(a)] is
visible in all the waveforms. However, as the inhomogeneity increases, the presence of the
scatterers distributes the energy to various paths with different length [see Fig. 2(b)]. Therefore,
the waveform distorts and a single transit time cannot be easily identified. This can be discussed
in terms of the wavelength to inclusion size ratio. Using the major frequency peak and wave
velocity, the wavelength, �, is calculated to be approximately 20 mm, and the sand grains of
size less than 3 mm are not expected to strongly influence the wave. On the other hand, the
plastic inclusions, which are 15 mm long in two dimensions, seem to cause strong interactions.
Note that the central frequency (calculated as the centroid of the fast Fourier transform) is
108 kHz for plain mortar, while for mortar with 10% inclusions it is reduced to 88 kHz for the
same propagation distance of 60 mm.

Although the inclusion content of each specimen was strictly controlled in total, it is
reasonable that the small volume examined at each individual measurement exhibits variations

Fig. 1. Average of waveforms collected at 20 mm increments relative to the excitation source on the surface of
mortar with inclusion content, �a� 0%, �b� 10%.
in the number of inclusions and their orientation. The different arrangement of the scatterers
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results in different waveforms [see Fig. 2(c)]. To highlight the effect of local variation, a number
of individual waveforms for each material are shown in Figs. 3(a) and 3(b). Each waveform was
recorded at a different point on the surface, but at the same distance from the excitation. In the
case of Fig. 3(a), the waveforms come from plain mortar. It is seen that the change in measure-
ment position causes no serious distortion. The Rayleigh cycle is always identified at the same
time. This is a result of the limited local variations in the structure of mortar. In Fig. 3(b), where
the case of material with 10% inclusions is concerned, the waveforms exhibit almost no simi-
larities. This is due to strong local variations of the material structure that make any travel path
unique. However, averaging the waveforms reveals a weak coherent field, as presented earlier in
Fig. 1(b).

The above results are a manifestation of the dispersion induced by the inclusions. They
imply that as damage is accumulated in concrete, the material behaves increasingly like an
inhomogeneous medium. Therefore, interpretation of ultrasonic data based on homogeneous
assumptions should be enhanced or modified in order to provide a wealth of new information in
the field of concrete damage characterization.

4. Velocity results

Measuring the transit time of the leading edge of a waveform as it propagates between different
receivers leads to the calculation of “pulse velocity”. This parameter is widely used in nonde-
structive testing of concrete, being indicative of the velocity that the energy propagates, al-
though it cannot be defined either as phase or group velocity. However, it is commonly accepted
that it corresponds to longitudinal waves. Calculation of this parameter reveals that the increase
of plastic inclusions has a decreasing effect on pulse velocity [see Fig. 4(a)]. The longitudinal

Fig. 2. Propagation in a medium with �a� no scatterers, �b� distributed scatterers, �c� different arrangement of
distributed scatterers.

Fig. 3. Waveforms collected at different positions on the surface of mortar with inclusion content, �a� 0%, �b� 10%.

The distance from the source is 60 mm.

. Am. 122 �5�, November 2007 D. G. Aggelis and T. Shiotani: Surface waves in heterogeneous media EL153



D. G. Aggelis and T. Shiotani: JASA Express Letters �DOI: 10.1121/1.2784151� Published Online 27 September 2007

EL154 J. Acou
velocity decreases from almost 4000 m/s, in the case of plain mortar, to 3239 m/s for mortar
with 10% inclusions, or suffers a decrease of approximately 18%. This is the average value
calculated from 20 individual measurements on the surface of each specimen. It is worth noting
that the experimental scatter clearly increases with the inclusion content. In Fig. 4(b) the coef-
ficient of variation, COV (the standard deviation of the twenty measurements divided by the
average value) is depicted vs the inclusion content. For the case of plain mortar the variation is
quite low (approximately 2.5%), as a result of the uniformity of the material. The addition of
inclusions increases COV up to 16%. This trend is another manifestation of the local variations
in the composition and arrangement of the material.

Concerning Rayleigh waves, for no or low inclusion content a reference point can be
identified in all cases, as mentioned earlier. However, there is no common reference in the
signals from the 5% and 10% specimens, complicating velocity measurements. Therefore,
cross-correlation between the signals collected from the first and third receiver was used. The
resulting time lag can be considered as a measure of the transit time of the major part of the
energy between the two transducer positions. This way, although a specific Rayleigh cycle is not
always identified, a measure of energy velocity is available. The results again show a decreasing
trend as the inclusion content increases. Inhomogeneity clearly diminishes the velocity from
2141 m/s for plain mortar to 1450 m/s for 10% of inclusions, as seen in Fig. 4(a). The decrease
of 32% shows that Rayleigh wave propagation is more influenced by inhomogeneity than lon-
gitudinal waves.

The difference in the behaviors of longitudinal and Rayleigh wave velocities seems
peculiar for an elastic material. According to well-established relations used for concrete,4 this
change of longitudinal to Rayleigh velocity ratio could be explained by a dramatic increase of
Poisson’s ratio from 0.24 for plain to 0.35 for “damaged” mortar, that is highly unlikely. The
greater decrease of Rayleigh velocity is more likely the result of its propagation mechanics,
including displacement components in two directions, which make it more sensitive to the ex-
istence of scatterers.

The experimental scatter of Rayleigh velocity values increases with inhomogeneity
and is certainly higher than that of longitudinal waves. It is worth mentioning that, although for
plain mortar the Rayleigh velocity COV is similar to the longitudinal waves’ one, for material
with just 1% of inclusions it becomes 12.3%, increasing up to almost 20% for high inclusion
content.

5. Rayleigh phase velocity

The above-mentioned results concern the propagation velocity of the whole pulse. Since the
medium is strongly inhomogeneous, each frequency component could be influenced in a differ-
ent way, imposed by the content and size of the scatterers. The pulse used contains energy up to

Fig. 4. Influence of vinyl inclusion content on �a� wave velocity and �b� experimental scatter of velocity measure-
ments on mortar.
300 kHz and it is interesting to examine how each frequency component behaves. Therefore,
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the frequency dependent phase velocity should be calculated. This is not trivial, since dispersion
hinders the identification of a particular portion of the wave, such as the Rayleigh contribution.9

However, the energy of the Rayleigh waves is much higher than the other contributions
and, therefore, isolating a part of the signal where the Rayleigh is expected, can yield informa-
tion about this wave type with very little influence from other types. In this case, a window of
30 �s around the major Rayleigh arrivals was isolated and the rest of the waveform was zero-
padded, as presented in other cases.9 Using fast Fourier transform, the phase of the waveform
was calculated and unwrapped. Therefore, the phase difference between waveforms collected at
different distances from the excitation (i.e., the first and third receiver) leads to the calculation
of phase velocity versus frequency curve.10 The results are depicted in Fig. 5(a) for different
materials. Each curve is the average of 20 individual curves, while the error bars stand for the
standard deviation and increase with inclusion content, as expected. It is seen that plain mortar
exhibits dispersive behavior, with velocity increasing up to about 200 kHz, as has been ob-
served recently for the longitudinal velocity of cementitious materials.1,2 The increased inho-
mogeneity induced by the plastic inclusions influences the velocity behavior more strongly.
Material with 10% inclusions exhibits the lowest curve, but even 1% of vinyl lowers the curve
considerably, compared to plain mortar.

Focusing on the shape of the curves, one detail is worth mentioning. At lower frequen-
cies, the curves exhibit high gradients. However, above 100 kHz the changes are not as abrupt.
This is a trend mentioned in many different multi-phase systems. Composites of solids in solids,
or suspensions of solids in liquids exhibit similar trends.7,8,11 At lower frequency bands the
velocity exhibits changes, and possibly many resonance peaks. However, at higher frequencies
phase velocity seems to converge to a value closer to the velocity of the matrix material. This
trend is explained by scattering theory when body waves are concerned. However, in the present
case a theoretical treatment is more complicated.

6. Attenuation

In order to obtain information concerning material damage, the attenuation behavior is studied
complementary to the velocity. The presence of inhomogeneities increases the attenuation,
mainly due to the redistribution of the energy to directions different from the receiver direction.
Strongly inhomogeneous media are known to exhibit more dramatic variations in attenuation
than in velocity. As seen earlier, inhomogeneity may result in velocity decrease of 30% com-
pared to the velocity of the matrix [see Fig. 4(a)]. However, attenuation may increase even by
orders of magnitude, as has been observed for many composite systems8 and concrete.12 The
material attenuation is the combination of different mechanisms. In the present study the total

Fig. 5. �Color online� �a� Rayleigh dispersion curves and �b� attenuation curves for different inclusion content of
mortar. The error bars stand for the standard deviation.
attenuation ��f� was calculated by
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where f is the frequency, A1�f� and A3�f� are the spectra from the first and third sensor respec-
tively, with a separation distance x=40 mm.

As seen in Fig. 5(b), plain mortar exhibits the lowest attenuation while material with
inclusion content 10% is more attenuative for the entire band.

It is noted that the attenuation of “damaged” is many times higher than the one of
sound material. Even for material with only 1% inclusions the attenuation is certainly increased,
making this feature suitable for characterization of slight damage in cases where the velocity
exhibits small or no sensitivity.12 This discrepancy increases with frequency. Therefore, higher
frequencies are more powerful for characterization, but only in laboratory conditions so far. In
large structures attenuation makes the acquisition and interpretation of stress wave data trouble-
some.

Another worth mentioning detail concerns the compatibility of dispersion and attenu-
ation curves. Considering the Kramers–Kronig relations, a rapid increase of phase velocity
[e.g., as in the lowest 50 kHz of Fig. 5(a)], should be accompanied by a clear attenuation peak
within the same frequency bandwidth.13,14 However, this is not observed for all the attenuation
curves of Fig. 5(b). This can be partially attributed to the errors bars, which could mask an
attenuation peak, especially for material with 10% inclusions. Another reasonable explanation
though, is that the material does not behave linearly (the response is not proportional to its
stimulus). Linearity is a condition for the validity of the Kramers–Kronig relations,13,14 but
cementitious materials have been reported to exhibit strongly non-linear behavior.15 Of course,
the Fourier spectroscopy approach assumes linearity, so if nonlinearity is a major issue, the
attenuation coefficient and phase velocity determinations may not be perfectly valid. Hence, we
have labeled these as the “effective velocity and attenuation spectra”.

7. Conclusion

This paper presents experimental results of surface wave propagation through a strongly inho-
mogeneous medium with randomly distributed and oriented thin inclusions. The main observa-
tions concern the strong Rayleigh velocity dependence on frequency and inclusion content, the
waveform distortion, and the frequency downshift which results in higher attenuation with in-
creasing frequency. Additionally, the inclusions obstruct Rayleigh waves more strongly than
longitudinal. This dispersive behavior is due to contributions from scattering, visco-elastic and
microstructure mechanisms, making the theoretical investigation highly complicated. However,
the experimental study of scattered waves’ characteristics can provide additional correlations
with damage, since the crack content leaves its signature on the propagating waveforms, dis-
persion, and attenuation curves. A next step of particular interest is to compare the influence of
different shape and size of inclusions on the Rayleigh parameters.
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